classificazione o clustering automatici
AutoClass risolve il problema di rilevare in modo automatico classi
all'interno di dati (talvolta chiamato clustering o apprendimento non
supervisionato), in contrasto con la generazione di descrizioni di classi
da esempi già classificati (chiamato apprendimento supervisionato). Mira a
scoprire le classi "naturali" all'interno dei dati. AutoClass è applicabile
ad osservazioni di quelle cose che possono essere descritte da un insieme
di attributi, senza fare riferimento ad altre cose. I valori dei dati
corrispondenti ad ogni attributo sono limitati ad essere o numeri o
elementi di un insieme finito di simboli. Con dati numerici deve essere
fornito un errore di misurazione.