[ 原始碼: debian-science ]
套件:science-datamanagement(1.14.7)
science-datamanagement 的相關連結
Debian 的資源:
下載原始碼套件 debian-science:
維護小組:
外部的資源:
- 主頁 [wiki.debian.org]
相似套件:
Debian Science Data Management packages
This metapackage will install packages to assist with data management tasks, such as obtaining data from remote resources, keeping data under version control, etc.
其他與 science-datamanagement 有關的套件
|
|
|
|
-
- dep: science-config (= 1.14.7)
- Debian Science Project config package
-
- dep: science-tasks (= 1.14.7)
- Debian Science tasks for tasksel
-
- rec: datalad
- data files management and distribution platform
-
- rec: datalad-container
- DataLad extension for working with containerized environments
-
- rec: git-annex
- manage files with git, without checking their contents into git
-
- rec: hdf5-filter-plugin
- external filters for HDF5: LZ4, BZip2, Bitshuffle
-
- rec: hdf5-filter-plugin-blosc-serial
- blocking, shuffling and lossless compression library
-
- rec: hdf5-filter-plugin-zfp-serial
- Compression plugin for the HDF5 library using ZFP compression
-
- rec: nexus-tools
- NeXus scientific data file format - applications
-
- rec: plfit
- fitting power-law distributions to empirical data -- interfaces
-
- rec: python3-jdata
- 套件暫時不可用
-
- rec: python3-mdp
- Modular toolkit for Data Processing
-
- rec: python3-nxs
- NeXus scientific data file format - Python 3 binding
-
- rec: python3-pyzoltan
- Wrapper for the Zoltan data management library
-
- rec: virtuoso-opensource
- high-performance database
-
- rec: visidata
- rapidly explore columnar data in the terminal
-
- sug: libnexus-dev
- NeXus scientific data file format - development libraries
-
- sug: libnexus-java
- NeXus scientific data file format - java libraries
-
- sug: libplfit-dev
- fitting power-law distributions to empirical data -- development
-
- sug: python3-openpyxl
- Python 3 module to read/write OpenXML xlsx/xlsm files
-
- sug: python3-opentsne
- t-Distributed Stochastic Neighbor Embedding algorithm
-
- sug: python3-plfit
- fitting power-law distributions to empirical data -- Python