[ 原始碼: r-cran-mertools ]
套件:r-cran-mertools(0.5.2-1)
r-cran-mertools 的相關連結
Debian 的資源:
下載原始碼套件 r-cran-mertools:
- [r-cran-mertools_0.5.2-1.dsc]
- [r-cran-mertools_0.5.2.orig.tar.gz]
- [r-cran-mertools_0.5.2-1.debian.tar.xz]
維護小組:
外部的資源:
- 主頁 [cran.r-project.org]
相似套件:
GNU R tools for analyzing mixed effect regression models
Provides methods for extracting results from mixed-effect model objects fit with the 'lme4' package. Allows construction of prediction intervals efficiently from large scale linear and generalized linear mixed-effects models.
其他與 r-cran-mertools 有關的套件
|
|
|
|
-
- dep: r-api-4.0
- 本虛擬套件由這些套件填實: r-base-core
-
- dep: r-base-core (>= 4.0.3-1)
- GNU R core of statistical computation and graphics system
-
- dep: r-cran-abind
- GNU R abind multi-dimensional array combination function
-
- dep: r-cran-arm
- Data Analysis Using Regression and Multilevel/Hierarchical Models
-
- dep: r-cran-blme
- GNU R Bayesian linear mixed-effects models
-
- dep: r-cran-broom.mixed
- GNU R tidying methods for mixed models
-
- dep: r-cran-dplyr
- GNU R grammar of data manipulation
-
- dep: r-cran-foreach
- GNU R foreach looping support
-
- dep: r-cran-ggplot2
- implementation of the Grammar of Graphics
-
- dep: r-cran-lme4 (>= 1.1-11)
- GNU R package for linear mixed effects model fitting
-
- dep: r-cran-mvtnorm
- GNU R package to compute multivariate Normal and T distributions
-
- dep: r-cran-shiny
- GNU R web application framework
-
- rec: r-cran-testthat
- GNU R testsuite
-
- sug: r-cran-amelia
- GNU R package supporting multiple imputation of missing data
-
- sug: r-cran-dt
- GNU R wrapper of the JavaScript library 'DataTables'
-
- sug: r-cran-future.apply
- apply function to elements in parallel using futures
-
- sug: r-cran-knitr
- GNU R package for dynamic report generation using Literate Programming
-
- sug: r-cran-nlme
- GNU R package for (non-)linear mixed effects models
-
- sug: r-cran-rmarkdown
- convert R markdown documents into a variety of formats
-
- sug: r-cran-rstanarm
- GNU R bayesian applied regression modeling via stan