[ 源代码: r-cran-sjmisc ]
软件包:r-cran-sjmisc(2.8.10-1)
r-cran-sjmisc 的相关链接
Debian 的资源:
下载源码包 r-cran-sjmisc:
- [r-cran-sjmisc_2.8.10-1.dsc]
- [r-cran-sjmisc_2.8.10.orig.tar.gz]
- [r-cran-sjmisc_2.8.10-1.debian.tar.xz]
维护小组:
外部的资源:
- 主页 [cran.r-project.org]
相似软件包:
GNU R data and variable transformation functions
Collection of miscellaneous utility functions, supporting data transformation tasks like recoding, dichotomizing or grouping variables, setting and replacing missing values. The data transformation functions also support labelled data, and all integrate seamlessly into a 'tidyverse'-workflow.
其他与 r-cran-sjmisc 有关的软件包
|
|
|
|
-
- dep: r-api-4.0
- 本虚包由这些包填实: r-base-core
-
- dep: r-cran-datawizard
- GNU R easy data wrangling
-
- dep: r-cran-dplyr
- GNU R grammar of data manipulation
-
- dep: r-cran-insight
- GNU R easy access to model information for various model objects
-
- dep: r-cran-magrittr
- GNU R forward-pipe operator
-
- dep: r-cran-purrr
- GNU R functional programming tools
-
- dep: r-cran-rlang
- Functions for Base Types and Core R and 'Tidyverse' Features
-
- dep: r-cran-sjlabelled (>= 1.1.1)
- GNU R labelled data utility functions
-
- dep: r-cran-tidyselect
- GNU R select from a set of strings
-
- rec: r-cran-ggplot2
- implementation of the Grammar of Graphics
-
- rec: r-cran-haven (>= 2.0.0)
- GNU R package to import/export SPSS, Stata and SAS files
-
- rec: r-cran-knitr
- GNU R package for dynamic report generation using Literate Programming
-
- rec: r-cran-mice
- GNU R multivariate imputation by chained equations
-
- rec: r-cran-nnet
- GNU R package for feed-forward neural networks
-
- rec: r-cran-rmarkdown
- convert R markdown documents into a variety of formats
-
- rec: r-cran-sjplot
- GNU R data visualization for statistics in social science
-
- rec: r-cran-sjstats
- GNU R collection of convenient functions for statistical computations
-
- rec: r-cran-stringdist
- GNU R approximate string matching and string distance functions
-
- rec: r-cran-testthat
- GNU R testsuite
-
- rec: r-cran-tidyr
- GNU R package to easily tidy data