软件包:r-cran-extradistr(1.9.1-1)
r-cran-extradistr 的相关链接
Debian 的资源:
下载源码包 r-cran-extradistr:
- [r-cran-extradistr_1.9.1-1.dsc]
- [r-cran-extradistr_1.9.1.orig.tar.gz]
- [r-cran-extradistr_1.9.1-1.debian.tar.xz]
维护小组:
外部的资源:
- 主页 [cran.r-project.org]
相似软件包:
additional univariate and multivariate distributions for GNU R
Density, distribution function, quantile function and random generation for a number of univariate and multivariate distributions. This package implements the following distributions: Bernoulli, beta-binomial, beta- negative binomial, beta prime, Bhattacharjee, Birnbaum-Saunders, bivariate normal, bivariate Poisson, categorical, Dirichlet, Dirichlet- multinomial, discrete gamma, discrete Laplace, discrete normal, discrete uniform, discrete Weibull, Frechet, gamma-Poisson, generalized extreme value, Gompertz, generalized Pareto, Gumbel, half-Cauchy, half- normal, half-t, Huber density, inverse chi-squared, inverse-gamma, Kumaraswamy, Laplace, location-scale t, logarithmic, Lomax, multivariate hypergeometric, multinomial, negative hypergeometric, non- standard beta, normal mixture, Poisson mixture, Pareto, power, reparametrized beta, Rayleigh, shifted Gompertz, Skellam, slash, triangular, truncated binomial, truncated normal, truncated Poisson, Tukey lambda, Wald, zero-inflated binomial, zero-inflated negative binomial, zero-inflated Poisson.
其他与 r-cran-extradistr 有关的软件包
|
|
|
|
-
- dep: libc6 (>= 2.29)
- GNU C 语言运行库:共享库
同时作为一个虚包由这些包填实: libc6-udeb
-
- dep: libgcc-s1 (>= 3.0)
- GCC 支持库
-
- dep: libstdc++6 (>= 5.2)
- GNU 标准 C++ 库,第3版
-
- dep: r-api-4.0
- 本虚包由这些包填实: r-base-core
-
- dep: r-base-core (>= 4.0.2-1)
- GNU R core of statistical computation and graphics system
-
- dep: r-cran-rcpp
- GNU R package for Seamless R and C++ Integration
-
- rec: r-cran-testthat
- GNU R testsuite
-
- sug: r-cran-actuar
- GNU R actuarial functions and heavy tailed distributions
-
- sug: r-cran-evd
- GNU R Functions for extreme value distributions
-
- sug: r-cran-vgam
- GNU R package for estimating vector generalized additive models