Пакунок: umap-learn (0.5.4+dfsg-1)
Links for umap-learn
Debian Resources:
Download Source Package umap-learn:
- [umap-learn_0.5.4+dfsg-1.dsc]
- [umap-learn_0.5.4+dfsg.orig.tar.xz]
- [umap-learn_0.5.4+dfsg-1.debian.tar.xz]
Maintainers:
External Resources:
- Homepage [github.com]
Similar packages:
Uniform Manifold Approximation and Projection
Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t- SNE, but also for general non-linear dimension reduction. The algorithm is founded on three assumptions about the data:
1. The data is uniformly distributed on a Riemannian manifold; 2. The Riemannian metric is locally constant (or can be approximated as such); 3. The manifold is locally connected.
From these assumptions it is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent fuzzy topological structure.
Інші пакунки пов'язані з umap-learn
|
|
|
|
-
- dep: python3
- interactive high-level object-oriented language (default python3 version)
-
- dep: python3-numba
- native machine code compiler for Python 3
-
- dep: python3-numpy
- Fast array facility to the Python language (Python 3)
-
- dep: python3-pandas
- data structures for "relational" or "labeled" data
-
- dep: python3-pynndescent
- nearest neighbor descent for approximate nearest neighbors
-
- dep: python3-scipy
- scientific tools for Python 3
-
- dep: python3-sklearn
- Python modules for machine learning and data mining - Python 3
-
- dep: python3-tqdm
- fast, extensible progress bar for Python 3 and CLI tool
Завантажити umap-learn
Архітектура | Розмір пакунка | Розмір після встановлення | Файли |
---|---|---|---|
all | 111.3 kB | 545.0 kB | [список файлів] |