alla flaggor
bullseye  ] [  bookworm  ] [  sid  ]
[ Källkod: umap-learn  ]

Paket: umap-learn (0.5.3+dfsg-2)

Länkar för umap-learn

Screenshot

Debianresurser:

Hämta källkodspaketet umap-learn:

Ansvariga:

Externa resurser:

Liknande paket:

Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t- SNE, but also for general non-linear dimension reduction. The algorithm is founded on three assumptions about the data:

 1. The data is uniformly distributed on a Riemannian manifold;
 2. The Riemannian metric is locally constant (or can be
    approximated as such);
 3. The manifold is locally connected.

From these assumptions it is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent fuzzy topological structure.

Andra paket besläktade med umap-learn

  • beror
  • rekommenderar
  • föreslår
  • enhances

Hämta umap-learn

Hämtningar för alla tillgängliga arkitekturer
Arkitektur Paketstorlek Installerad storlek Filer
all 108,1 kbyte523,0 kbyte [filförteckning]