Pakiet: umap-learn (0.4.5+dfsg-2)
Odnośniki dla umap-learn
Zasoby systemu Debian:
- Raporty o błędach
- Developer Information
- Dziennik zmian w systemie Debian
- Informacje nt. praw autorskich
- Śledzenie łatek systemu Debian
Pobieranie pakietu źródłowego umap-learn:
- [umap-learn_0.4.5+dfsg-2.dsc]
- [umap-learn_0.4.5+dfsg.orig.tar.xz]
- [umap-learn_0.4.5+dfsg-2.debian.tar.xz]
Opiekunowie:
- Debian Med Packaging Team (Strona QA, Archiwum e-mail)
- Andreas Tille (Strona QA)
- Nilesh Patra (Strona QA)
Zasoby zewnętrzne:
- Strona internetowa [github.com]
Podobne pakiety:
Uniform Manifold Approximation and Projection
Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t- SNE, but also for general non-linear dimension reduction. The algorithm is founded on three assumptions about the data:
1. The data is uniformly distributed on a Riemannian manifold; 2. The Riemannian metric is locally constant (or can be approximated as such); 3. The manifold is locally connected.
From these assumptions it is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent fuzzy topological structure.
Inne pakiety związane z umap-learn
|
|
|
|
-
- dep: python3
- interactive high-level object-oriented language (default python3 version)
-
- dep: python3-numba
- native machine code compiler for Python 3
-
- dep: python3-numpy
- Fast array facility to the Python 3 language
-
- dep: python3-scipy
- Narzędzia naukowe dla Pythona 3
-
- dep: python3-sklearn
- Python modules for machine learning and data mining - Python 3
Pobieranie umap-learn
Architektura | Rozmiar pakietu | Rozmiar po instalacji | Pliki |
---|---|---|---|
all | 54,1 KiB | 342,0 KiB | [lista plików] |