wszystkie opcje
bullseye  ] [  bookworm  ] [  sid  ]
[ Pakiet źródłowy: umap-learn  ]

Pakiet: umap-learn (0.5.3+dfsg-2)

Odnośniki dla umap-learn

Screenshot

Zasoby systemu Debian:

Pobieranie pakietu źródłowego umap-learn:

Opiekunowie:

Zasoby zewnętrzne:

Podobne pakiety:

Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t- SNE, but also for general non-linear dimension reduction. The algorithm is founded on three assumptions about the data:

 1. The data is uniformly distributed on a Riemannian manifold;
 2. The Riemannian metric is locally constant (or can be
    approximated as such);
 3. The manifold is locally connected.

From these assumptions it is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent fuzzy topological structure.

Inne pakiety związane z umap-learn

  • wymaga
  • poleca
  • sugeruje
  • enhances

Pobieranie umap-learn

Pobierz dla wszystkich dostępnych architektur
Architektura Rozmiar pakietu Rozmiar po instalacji Pliki
all 108,1 KiB523,0 KiB [lista plików]