Pakket: r-cran-sjstats (0.17.3-1)
Verwijzigingen voor r-cran-sjstats
Debian bronnen:
Het bronpakket r-cran-sjstats downloaden:
- [r-cran-sjstats_0.17.3-1.dsc]
- [r-cran-sjstats_0.17.3.orig.tar.gz]
- [r-cran-sjstats_0.17.3-1.debian.tar.xz]
Beheerders:
Externe bronnen:
- Homepage [cran.r-project.org]
Vergelijkbare pakketten:
GNU R collection of convenient functions for statistical computations
Collection of convenient functions for common statistical computations, which are not directly provided by R's base or stats packages. This package aims at providing, first, shortcuts for statistical measures, which otherwise could only be calculated with additional effort (like standard errors or root mean squared errors). Second, these shortcut functions are generic (if appropriate), and can be applied not only to vectors, but also to other objects as well (e.g., the Coefficient of Variation can be computed for vectors, linear models, or linear mixed models; the r2()-function returns the r-squared value for 'lm', 'glm', 'merMod' or 'lme' objects). The focus of most functions lies on summary statistics or fit measures for regression models, including generalized linear models and mixed effects models. However, some of the functions also deal with other statistical measures, like Cronbach's Alpha, Cramer's V, Phi etc.
Andere aan r-cran-sjstats gerelateerde pakketten
|
|
|
|
-
- dep: r-api-3.5
- virtueel pakket geboden door r-base-core
-
- dep: r-base-core (>= 3.5.2-1)
- GNU R core of statistical computation and graphics system
-
- dep: r-cran-bayesplot
- GNU R plotting for bayesian models
-
- dep: r-cran-broom
- convert statistical analysis objects into tidy data frames with GNU R
-
- dep: r-cran-coin
- GNU R package providing conditional inference procedures
-
- dep: r-cran-crayon
- GNU R colored terminal output
-
- dep: r-cran-dplyr
- GNU R grammar of data manipulation
-
- dep: r-cran-emmeans
- GNU R estimated marginal means, aka least-squares means
-
- dep: r-cran-glmmtmb (>= 0.2.2.0)
- Generalized Linear Mixed Models using Template Model Builder
-
- dep: r-cran-lme4
- GNU R package for linear mixed effects model fitting
-
- dep: r-cran-magrittr
- GNU R forward-pipe operator
-
- dep: r-cran-mass
- GNU R package of Venables and Ripley's MASS
-
- dep: r-cran-matrix
- GNU R package of classes for dense and sparse matrices
-
- dep: r-cran-modelr
- GNU R modelling functions that work with the pipe
-
- dep: r-cran-nlme
- GNU R package for (non-)linear mixed effects models
-
- dep: r-cran-purrr
- GNU R functional programming tools
-
- dep: r-cran-pwr
- GNU R basic functions for power analysis
-
- dep: r-cran-rlang
- Functions for Base Types and Core R and 'Tidyverse' Features
-
- dep: r-cran-sjlabelled (>= 1.0.14)
- GNU R labelled data utility functions
-
- dep: r-cran-sjmisc (>= 2.7.5)
- GNU R data and variable transformation functions
-
- dep: r-cran-tidyr
- GNU R package to easily tidy data
-
- sug: r-cran-car
- GNU R Companion to Applied Regression by John Fox
-
- sug: r-cran-ggplot2
- implementation of the Grammar of Graphics
-
- sug: r-cran-ggridges
- Ridgeline Plots in 'ggplot2'
-
- sug: r-cran-knitr
- GNU R package for dynamic report generation using Literate Programming
-
- sug: r-cran-loo
- GNU R leave-one-out cross-validation and WAIC for Bayesian models
-
- sug: r-cran-pbkrtest (>= 0.4-7)
- GNU R package for tests in linear mixed-effect models
-
- sug: r-cran-psych
- GNU R procedures for psychological, psychometric, and personality research
-
- sug: r-cran-rstan
- GNU R interface to Stan
-
- sug: r-cran-rstantools
- tools for developing GNU R packages interfacing with 'Stan'
-
- sug: r-cran-sandwich
- GNU R package for model-robust standard error estimates
-
- sug: r-cran-scales
- Scale functions for visualization
-
- sug: r-cran-sjplot
- GNU R data visualization for statistics in social science
-
- sug: r-cran-survey
- GNU R analysis of complex survey samples
-
- sug: r-cran-testthat
- GNU R testsuite
-
- sug: r-cran-vgam
- GNU R package for estimating vector generalized additive models
-
- sug: r-cran-zelig
- GNU R package providing a unified front-end for estimating statistical models