Pakket: r-cran-fpc (2.2-9-1)
Verwijzigingen voor r-cran-fpc
Debian bronnen:
Het bronpakket r-cran-fpc downloaden:
Beheerders:
Externe bronnen:
- Homepage [cran.r-project.org]
Vergelijkbare pakketten:
GNU R flexible procedures for clustering
Various methods for clustering and cluster validation. Fixed point clustering. Linear regression clustering. Clustering by merging Gaussian mixture components. Symmetric and asymmetric discriminant projections for visualisation of the separation of groupings. Cluster validation statistics for distance based clustering including corrected Rand index. Cluster-wise cluster stability assessment. Methods for estimation of the number of clusters: Calinski-Harabasz, Tibshirani and Walther's prediction strength, Fang and Wang's bootstrap stability. Gaussian/multinomial mixture fitting for mixed continuous/categorical variables. Variable-wise statistics for cluster interpretation. DBSCAN clustering. Interface functions for many clustering methods implemented in R, including estimating the number of clusters with kmeans, pam and clara. Modality diagnosis for Gaussian mixtures.
Andere aan r-cran-fpc gerelateerde pakketten
|
|
|
|
-
- dep: r-api-4.0
- virtueel pakket geboden door r-base-core
-
- dep: r-base-core (>= 4.0.3-1)
- GNU R core of statistical computation and graphics system
-
- dep: r-cran-class
- GNU R package for classification
-
- dep: r-cran-cluster
- GNU R package for cluster analysis by Rousseeuw et al
-
- dep: r-cran-diptest
- Hartigan's Dip Test Statistic for Unimodality - Corrected
-
- dep: r-cran-flexmix
- GNU R flexible mixture modeling
-
- dep: r-cran-kernlab
- GNU R package for kernel-based machine learning lab
-
- dep: r-cran-mass
- GNU R package of Venables and Ripley's MASS
-
- dep: r-cran-mclust
- Gaussian Mixture Modelling for Model-Based Clustering
-
- dep: r-cran-prabclus
- GNU R clustering of presence-absence, abundance and multilocus genetic data
-
- dep: r-cran-robustbase
- GNU R package providing basic robust statistics
-
- rec: r-cran-mvtnorm
- GNU R package to compute multivariate Normal and T distributions