Bioconductor resampling-based multiple hypothesis testing
Non-parametric bootstrap and permutation resampling-based multiple
testing procedures (including empirical Bayes methods) for controlling
the family-wise error rate (FWER), generalized family-wise error rate
(gFWER), tail probability of the proportion of false positives (TPPFP),
and false discovery rate (FDR). Several choices of bootstrap-based null
distribution are implemented (centered, centered and scaled,
quantile-transformed). Single-step and step-wise methods are available.
Tests based on a variety of t- and F-statistics (including t-statistics
based on regression parameters from linear and survival models as well
as those based on correlation parameters) are included. When probing
hypotheses with t-statistics, users may also select a potentially faster
null distribution which is multivariate normal with mean zero and
variance covariance matrix derived from the vector influence function.
Results are reported in terms of adjusted p-values, confidence regions
and test statistic cutoffs. The procedures are directly applicable to
identifying differentially expressed genes in DNA microarray
experiments.