Paquet : umap-learn (0.4.5+dfsg-2)
Liens pour umap-learn
Ressources Debian :
- Rapports de bogues
- Developer Information
- Journal des modifications Debian
- Fichier de licence
- Suivis des correctifs pour Debian
Télécharger le paquet source umap-learn :
- [umap-learn_0.4.5+dfsg-2.dsc]
- [umap-learn_0.4.5+dfsg.orig.tar.xz]
- [umap-learn_0.4.5+dfsg-2.debian.tar.xz]
Responsables :
- Debian Med Packaging Team (Page QA, Archive du courrier électronique)
- Andreas Tille (Page QA)
- Nilesh Patra (Page QA)
Ressources externes :
- Page d'accueil [github.com]
Paquets similaires :
Uniform Manifold Approximation and Projection
Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t- SNE, but also for general non-linear dimension reduction. The algorithm is founded on three assumptions about the data:
1. The data is uniformly distributed on a Riemannian manifold; 2. The Riemannian metric is locally constant (or can be approximated as such); 3. The manifold is locally connected.
From these assumptions it is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent fuzzy topological structure.
Autres paquets associés à umap-learn
|
|
|
|
-
- dep: python3
- langage orienté objet interactif de haut niveau – version par défaut de Python 3
-
- dep: python3-numba
- native machine code compiler for Python 3
-
- dep: python3-numpy
- gestion rapide des tableaux avec le langage Python 3
-
- dep: python3-scipy
- outils scientifiques pour Python 3
-
- dep: python3-sklearn
- Python modules for machine learning and data mining - Python 3
Télécharger umap-learn
Architecture | Taille du paquet | Espace occupé une fois installé | Fichiers |
---|---|---|---|
all | 54,1 ko | 342,0 ko | [liste des fichiers] |